Monotone Submodular Maximization over a Matroid via Non-Oblivious Local Search

نویسندگان

  • Yuval Filmus
  • Justin Ward
چکیده

We present an optimal, combinatorial 1−1/e approximation algorithm for monotone submodular optimization over a matroid constraint. Compared to the continuous greedy algorithm (Calinescu, Chekuri, Pál and Vondrák, 2008), our algorithm is extremely simple and requires no rounding. It consists of the greedy algorithm followed by local search. Both phases are run not on the actual objective function, but on a related auxiliary potential function, which is also monotone submodular. In our previous work on maximum coverage (Filmus and Ward, 2011), the potential function gives more weight to elements covered multiple times. We generalize this approach from coverage functions to arbitrary monotone submodular functions. When the objective function is a coverage function, both definitions of the potential function coincide. Our approach generalizes to the case where the monotone submodular function has restricted curvature. For any curvature c, we adapt our algorithm to produce a (1 − e−c)/c approximation. This matches results of Vondrák (2008), who has shown that the continuous greedy algorithm produces a (1 − e−c)/c approximation when the objective function has curvature c, and proved that achieving any better approximation ratio is impossible in the value oracle model.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Power of Local Search: Maximum Coverage over a Matroid

We present an optimal, combinatorial 1− 1/e approximation algorithm for Maximum Coverage over a matroid constraint, using non-oblivious local search. Calinescu, Chekuri, Pál and Vondrák have given an optimal 1−1/e approximation algorithm for the more general problem of monotone submodular maximization over a matroid constraint. The advantage of our algorithm is that it is entirely combinatorial...

متن کامل

Improved Approximations for k-Exchange Systems

Submodular maximization and set systems play a major role in combinatorial optimization. It is long known that the greedy algorithm provides a 1/(k + 1)-approximation for maximizing a monotone submodular function over a k-system. For the special case of k-matroid intersection, a local search approach was recently shown to provide an improved approximation of 1/(k+ δ) for arbitrary δ > 0. Unfort...

متن کامل

Submodular Maximization over Multiple Matroids via Generalized Exchange Properties

Submodular-function maximization is a central problem in combinatorial optimization, generalizing many important NP-hard problems including Max Cut in digraphs, graphs and hypergraphs, certain constraint satisfaction problems, maximum-entropy sampling, and maximum facility-location problems. Our main result is that for any k ≥ 2 and any ε > 0, there is a natural local-search algorithm which has...

متن کامل

Maximizing non-monotone submodular set functions subject to different constraints: Combined algorithms

We study the problem of maximizing constrained non-monotone submodular functions and provide approximation algorithms that improve existing algorithms in terms of either the approximation factor or simplicity. Our algorithms combine existing local search and greedy based algorithms. Different constraints that we study are exact cardinality and multiple knapsack constraints. For the multiple-kna...

متن کامل

Constrained Non-monotone Submodular Maximization: Offline and Secretary Algorithms

Constrained submodular maximization problems have long been studied, most recently in the context of auctions and computational advertising, with near-optimal results known under a variety of constraints when the submodular function is monotone. The case of non-monotone submodular maximization is less well understood: the first approximation algorithms even for the unconstrained setting were gi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Comput.

دوره 43  شماره 

صفحات  -

تاریخ انتشار 2014